Multi-modal contrastive learning adapts to intrinsic dimension of shared latent variables

Yu Gui¹ Cong Ma² Zongming Ma³

¹ Department of Statistics and Data Science, University of Pennsylvania, ² Department of Statistics, University of Chicago, ³ Department of Statistics and Data Science, Yale University yugui@wharton.upenn.edu, congm@uchicago.edu, zongming.ma@yale.edu

Growing availability of multi-modal measurements

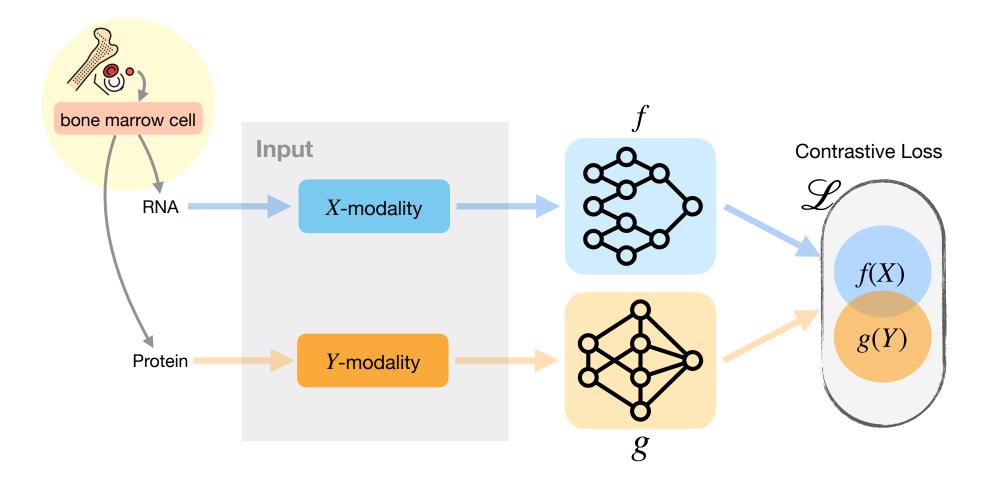
How can one efficiently integrate data from multi-modalities?

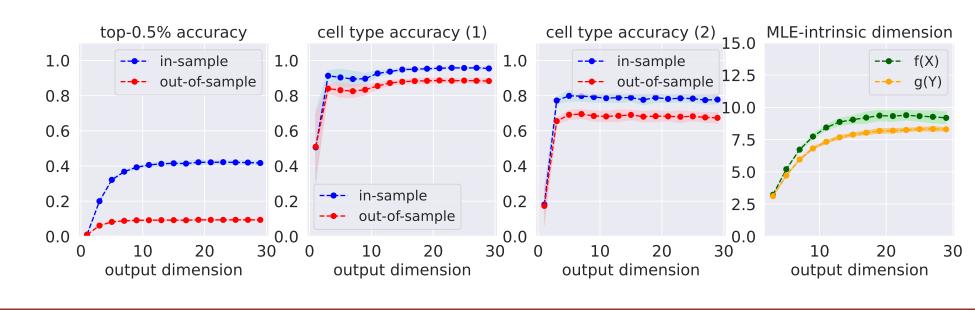
Multi-modal Contrastive Learning

maximize $sim(f(X_i), g(Y_i))$, minimize $sim(f(X_i), g(Y_j))$, $i \neq j$

- ➤ Contrastive language-image pre-training (CLIP)[2] has been the SOTA pipeline for multi-modal learning
- \blacktriangleright infoNCE loss $\mathcal{L}^N(f,g,\tau)$ with **temperature optimization**

$$-\frac{1}{N}\sum_{i\in[N]}\log\frac{\exp\left(\frac{\sigma(f(X_i),g(Y_i))}{\tau}\right)}{N^{-1}\sum_{j\in[N]}\exp\left(\frac{\sigma(f(X_i),g(Y_j))}{\tau}\right)} + \text{symmetric term}$$



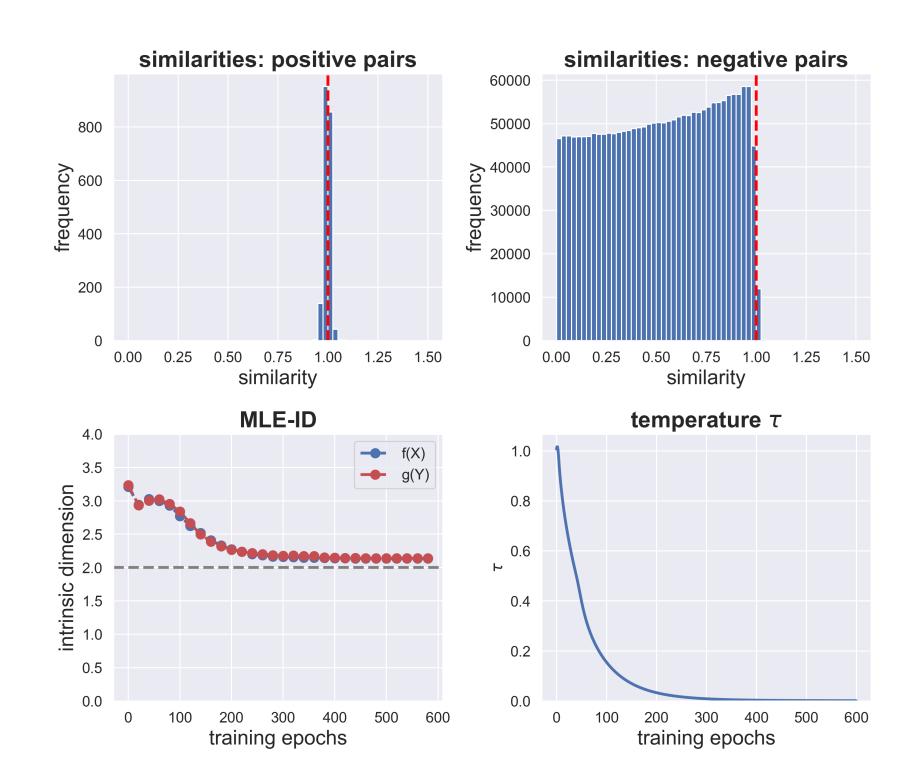


Question

- ➤ What representations does infoNCE learn in CLIP?
- \blacktriangleright How to tune or optimize temperature τ ?

A toy example

 $Y_i \overset{i.i.d.}{\sim} \mathcal{N}(0, \mathbf{I}_{20}), \quad \xi_i \overset{i.i.d.}{\sim} \mathcal{N}(0, \mathbf{I}_{20-k^*}), \quad X_i = (Y_{i1}, \cdots, Y_{ik^*}, \xi_i^\top)^\top$



- ➤ Similarity concentration: For positive pairs, cosine similarities concentrates around 1, while negative pairs are capped by 1
- ➤ Intrinsic dimension adaptation: Although output d=3, representations with intrinsic dimension $k^*=2$ are preferred
- **Temperature convergence**: The optimized temperature $\tau \to 0$

Intrinsic dimension: $\mathbf{ID}(f)$ is the smallest integer k s.t. there exist a measurable function $h: \mathbb{R}^{d_1} \to \mathbb{R}^d$ with $\dim(R(h)) = k$ and an injective measurable function $\phi: R(h) \to \mathbb{R}^d$ s.t. $f(x) = (\phi \circ h)(x)$ almost everywhere

Ideal Representations

➤ Alignment: with $m_{\sigma}(f,g) = \operatorname{ess\ sup}_{X \parallel \widetilde{Y}} \sigma(f(X),g(\widetilde{Y}))$

$$\mathcal{A}(\mathcal{H}) = \left\{ (f,g) \in \mathcal{H}: \ \frac{f(X)}{\mathbb{E}\|f(X)\|} = \frac{g(Y)}{\mathbb{E}\|g(Y)\|}, \quad \sigma(f(X),g(Y)) = m_{\sigma}(f,g) \text{ a.s.} \right\}$$

➤ Mutual information maximization: $I_M^*(\mathcal{H}) = \sup_{\mathcal{H}} I(f_M(X); g_M(Y))$

$$\mathcal{W}(\mathcal{H}) = \left\{ (f,g) \in \mathcal{H} : \lim \inf_{M \to +\infty} \left(I(f_M(X); g_M(Y)) - I_M^*(\mathcal{H}) \right) \ge 0 \right\}$$

$$\mathcal{V}(\mathcal{H}) = \mathcal{A}(\mathcal{H}) \cap \mathcal{W}(\mathcal{H})$$

➤ Intrinsic dimension adaptation:

Suppose $\mathcal{V}(\mathcal{H}) \neq \emptyset$. Then, for all $(f,g) \in \mathcal{V}(\mathcal{H})$, we have $\mathtt{ID}(f) = \mathtt{ID}(g) = k^*$, i.e., maps in \mathcal{H} have the same intrinsic dimension k^*

Is any (approximate) minimizer of CLIP ideal?

$$O_{\mathcal{L},\eta}(\mathcal{H}) = \left\{ (f,g) \in \mathcal{H} : \exists \tau \ge \varepsilon(\eta), \limsup_{M \to +\infty} \left(\mathcal{L}(f_M, g_M, \tau) + 2I_M^*(\mathcal{H}) \right) \le 2\eta \right\}$$

Main results [1]

$$\mathcal{V}(\mathcal{H}) \neq \varnothing \implies \bigcap_{\eta > 0} \mathcal{O}_{\mathcal{L},\eta}(\mathcal{H}) \neq \varnothing.$$

In addition, for any $(f,g) \in \bigcap_{\eta \geq 0} \mathcal{O}_{\mathcal{L},\eta}(\mathcal{H})$,

- ightharpoonup (similarity maximization) $\sigma(f(X),g(Y))=m_{\sigma}(f,g)$ almost surely
- \blacktriangleright (intrinsic dimension adaptation) $ID(f) = ID(g) = k^*$
- \blacktriangleright (monotonicity in temperature) $\mathcal{L}(f,g,\tau)$ is increasing in τ
- \blacktriangleright (mutual information maximization) $(f,g) \in \mathcal{W}(\mathcal{H})$

References

NeurIPS 2025 yugui@wharton.upenn.edu

^[1] Gui, Y., Ma, C., and Ma, Z. (2025). Multi-modal contrastive learning adapts to intrinsic dimensions of shared latent variables. *NeurIPS*.

^[2] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al. (2021). Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pages 8748–8763. PMLR.