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Growing availability of multi‐modal measurements

⇓
How can one efficiently integrate data from multi‐modalities?

Multi-modal Contrastive Learning

maximize sim(f (Xi), g(Yi)), minimize sim(f (Xi), g(Yj)), i ̸= j

ä Contrastive language‐image pre‐training (CLIP)[2] has been the
SOTA pipeline for multi‐modal learning

ä infoNCE loss LN (f, g, τ ) with temperature optimization
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Figure 1. Results with CITE-seq dataset.

Question
ä What representations does infoNCE learn in CLIP?
ä How to tune or optimize temperature τ?

A toy example

Yi
i.i.d.∼ N (0, I20), ξi

i.i.d.∼ N (0, I20−k∗), Xi = (Yi1, · · · , Yik∗, ξ⊤
i )⊤

ä Similarity concentration: For positive pairs, cosine similarities
concentrates around 1, while negative pairs are capped by 1

ä Intrinsic dimension adaptation: Although output d = 3, repre‐
sentations with intrinsic dimension k∗ = 2 are preferred

ä Temperature convergence: The optimized temperature τ → 0

Intrinsic dimension: ID(f ) is the smallest integer k s.t. there exist a
measurable function h : Rd1 → Rd with dim(R(h)) = k and an injective
measurable function ϕ : R(h) → Rd s.t. f (x) = (ϕ ◦ h)(x) almost
everywhere

Ideal Representations

ä Alignment: with mσ(f, g) = ess sup
X |= Ỹ σ(f (X), g(Ỹ ))

A(H) =
{

(f, g) ∈ H : f (X)
E∥f (X)∥

= g(Y )
E∥g(Y )∥

, σ(f (X), g(Y )) = mσ(f, g) a.s.
}

ä Mutual information maximization: I∗
M (H) = supH I(fM (X); gM (Y ))

W(H) =
{

(f, g) ∈ H : lim inf
M→+∞

(
I(fM (X); gM (Y )) − I∗

M (H)
)

≥ 0
}

V(H) = A(H) ∩ W(H)

ä Intrinsic dimension adaptation:

Suppose V(H) ̸= ∅. Then, for all (f, g) ∈ V(H), we have ID(f ) =
ID(g) = k∗, i.e., maps in H have the same intrinsic dimension k⋆

Is any (approximate) minimizer of CLIP ideal?

OL,η(H) =

{
(f, g) ∈ H : ∃ τ ≥ ε(η), lim sup

M→+∞

(
L(fM , gM , τ ) + 2I∗

M (H)
)

≤ 2η

}

Main results [1]

V(H) ̸= ∅ =⇒
⋂
η≥0

OL,η(H) ̸= ∅.

In addition, for any (f, g) ∈
⋂

η≥0 OL,η(H),

â (similarity maximization) σ(f (X), g(Y )) = mσ(f, g) almost surely
â (intrinsic dimension adaptation) ID(f ) = ID(g) = k∗

â (monotonicity in temperature) L(f, g, τ ) is increasing in τ

â (mutual information maximization) (f, g) ∈ W(H)
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