
Conformalized Matrix Completion
Yu Gui Rina Foygel Barber Cong Ma

Department of Statistics, University of Chicago

Matrix completion


X ? ? ? X ?
? ? X X ? ?
X ? ? X ? ?
? ? X ? ? X
X ? ? X ? ?


Econometrics: panel data prediction

and inference

Recommender system: collaborative

filtering

Bioinformatics: gene-disease

association

Problem setup

Noisy and incomplete observation

Mij = M∗
ij + noise, (i, j) ∈ S ⊆ [d1] × [d2]

Point estimation: estimate M∗ (low-rank)

Point prediction: predict stochastic entries Mij for (i, j) ∈ Sc

Success of model-based matrix completion

Model assumptions: (1) low-rank matrix: rank(M∗) = r = O(1), (2)
random sampling: P((i, j) ∈ S) = p independently, (3) random i.i.d.

sub-Gaussian noise, (4) incoherent and well-conditioned

Minimax rate matches computational limit [1]

‖M̂ − M∗‖F � σ
√

n/p

Question: How can we quantify the uncertainty in completed

entries?

Model-based inference is feasible

Asymptotically valid (1 − α)-confidence interval for Mij based on

the asymptotic distribution M̂ij − M∗
ij ≈ N (0, θ2

ij):

C(i, j) = M̂ij ± q1−α/2

√
θ̂2
ij + σ̂2

Question: Is distribution-free inference possible for matrix completion?

Free of model assumptions on the underlying matrix M
Free of the choice of estimation algorithms

Distribution-free uncertainty quantification via split
conformal prediction

Heterogeneous sampling: each entry (i, j) is observed with probability

pij > 0 independently

Question: Why is matrix completion different from regression problem?

1. How to address the dependence between Str and Scal?

2. Since the “covariates” (i, j) are sampled without replacement, can

we still have a tractable form of weights?

Conformalized matrix completion (cmc)

Input: M ∈ Rd1×d2, S = {(i, j) ∈ [d1] × [d2] | Mij is observed}
Step 1: For any pre-specified η ∈ (0, 1), draw Wij ∼ Bern(η)
Step 2: Data splitting S = Str ∪ Scal:

Str = {(i, j) ∈ S : Wij = 1}, Scal = {(i, j) ∈ S : Wij = 0}.

Step 3: With the training set MStr,

1. Estimate M̂ = (M̂ij) and P̂ = (p̂ij)
2. Calculate a local uncertainty estimate ŝ = (ŝij)

Step 4: With the calibration set,

1. Calculate the nonconformity scores Rij = |Mij−M̂ij|
ŝij

, (i, j) ∈ Scal

2. Calculate the weights for each (i, j) ∈ Scal ∪ {(i∗, j∗)}

ŵij = ĥij∑
(i′,j′)∈Scal

ĥi′j′ + ĥi∗j∗

3. Calculate the quantile for each (i∗, j∗):

q̂i∗j∗ = Quantile1−α

 ∑
(i,j)∈Scal

ŵijδRij
+ ŵi∗j∗δ∞


Output:

Ĉ(i∗, j∗) = M̂i∗j∗ ± q̂i∗j∗ŝi∗j∗

Weighted exchangeability conditioning on Str

Lemma. If (i∗, j∗) | S ∼ Unif(Sc), it holds that

P
{

(i∗, j∗) = (ik, jk) | Scal ∪ {(i∗, j∗)} = S(ncal+1), Str
}

= wikjk

where S(ncal+1) = {(i1, j1), . . . , (incal+1, jncal+1)} is the unordered set

and we define the weights

wikjk
=

hikjk∑ncal+1
k′=1 hik′jk′

with odds ratio hij =
1 − pij

pij
.

Coverage guarantee

Define the average coverage rate over the unsampled set

AvgCov(Ĉ; M, S) = 1
|Sc|

∑
(i,j)∈Sc

1
{

Mij ∈ Ĉ(i, j)
}

Theorem

Conformalized matrix completion (cmc) satisfies

E
[
AvgCov(Ĉ; M, S)

]
≥ 1 − α − E[∆],

where ∆ = 1
2
∑

(i,j)∈Scal∪{(i∗,j∗)}
∣∣ŵij − wij

∣∣
Coverage gap with common sampling models.

Uniform sampling pij = p =⇒ ∆ = 0
Logistic missingness − log(hij) = ui + vj and u>1 = 0. Maximum

likelihood estimator yields E[∆] .
√

log(max{d1,d2})
min{d1,d2}

Missingness with a general link function − log
(
hij

)
= φ(Aij) and

rank(A) = k∗. MLE yields E[∆] . min{d1, d2}−1/4

Numerical simulations

Model-based approach can be invalid

5 0 5
0.0

0.5

1.0

1.5

2.0

D
en

si
ty

Alternative least squares

empirical scores
Gaussian(0,1)

0 20 40
index

10

0

10

20

un
ob

se
rv

ed
 e

nt
rie

s

Lower and upper bounds

true entry
cmc-als
als

Figure 1. Violation of incoherence.

Rossmann sales dataset

Heterogeneous missingness: pij = 0.8 for weekdays and pij = 0.8/3
for weekends; pij = 0.8/3 for 200 randomly sampled stores

Working model: one-bit model with a logistic link function

More simulation results can be found in Gui et al. [2]
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