

Conformalized Matrix Completion

Yu Gui Rina Foygel Barber Cong Ma

Department of Statistics, University of Chicago

Matrix completion

- Econometrics: panel data prediction and inference
- Recommender system: collaborative filtering
- Bioinformatics: gene-disease association

Problem setup

Noisy and incomplete observation

 $M_{ij} = M_{ij}^* + \text{noise}, \qquad (i, j) \in \mathcal{S} \subseteq [d_1] \times [d_2]$

- Point estimation: estimate \mathbf{M}^* (low-rank)
- Point prediction: predict stochastic entries M_{ij} for $(i, j) \in \mathcal{S}^c$

Success of model-based matrix completion

• Model assumptions: (1) low-rank matrix: $rank(\mathbf{M}^*) = r = O(1)$, (2) random sampling: $\mathbb{P}((i, j) \in S) = p$ independently, (3) random i.i.d. sub-Gaussian noise, (4) incoherent and well-conditioned

Weighted exchangeability conditioning on $\mathcal{S}_{\mathrm{tr}}$

Lemma. If $(i_*, j_*) | \mathcal{S} \sim \text{Unif}(\mathcal{S}^c)$, it holds that $\mathbb{P}\left\{(i_*, j_*) = (i_k, j_k) | \mathcal{S}_{cal} \cup \{(i_*, j_*)\} = \mathbb{S}^{(n_{cal}+1)}, \mathcal{S}_{tr}\right\} = w_{i_k j_k}$ where $\mathbb{S}^{(n_{cal}+1)} = \{(i_1, j_1), \dots, (i_{n_{cal}+1}, j_{n_{cal}+1})\}$ is the unordered set and we define the weights $h_{i_1, i_2} = \sum_{j_1, j_2, \dots, j_{j_{cal}+1}} | f_{i_1} = \{(i_1, j_2), \dots, (i_{n_{cal}+1}, j_{n_{cal}+1})\}$

$$w_{i_k j_k} = rac{h_{i_k j_k}}{\sum_{k'=1}^{n_{\text{cal}}+1} h_{i_{k'} j_{k'}}}$$
 with odds ratio $h_{ij} = rac{1 - p_{ij}}{p_{ij}}$.

Coverage guarantee

Define the average coverage rate over the unsampled set

$$\operatorname{AvgCov}(\widehat{C};\mathbf{M},\mathcal{S}) = \frac{1}{|\mathcal{S}^c|} \sum_{(i,j)\in\mathcal{S}^c} \mathbf{1}\Big\{M_{ij}\in\widehat{C}(i,j)\Big\}$$

Theorem

Minimax rate matches computational limit [1]

$$\|\widehat{\mathbf{M}} - \mathbf{M}^*\|_{\mathrm{F}} \asymp \sigma \sqrt{n/p}$$

 Question: How can we quantify the uncertainty in completed entries?

Model-based inference is feasible

• Asymptotically valid $(1 - \alpha)$ -confidence interval for M_{ij} based on the asymptotic distribution $\widehat{M}_{ij} - M^*_{ij} \approx \mathcal{N}(0, \theta^2_{ij})$: $C(i, j) = \widehat{M}_{ij} \pm q_{1-\alpha/2} \sqrt{\widehat{\theta}^2_{ij} + \widehat{\sigma}^2}$

Question: Is distribution-free inference possible for matrix completion?

- Free of model assumptions on the underlying matrix ${f M}$
- Free of the choice of estimation algorithms

Distribution-free uncertainty quantification via split conformal prediction

Heterogeneous sampling: each entry (i, j) is observed with probability $p_{ij} > 0$ independently

Question: Why is matrix completion different from regression problem?

- 1. How to address the dependence between S_{tr} and S_{cal} ?
- 2. Since the "covariates" (i, j) are sampled without replacement, can we still have a tractable form of weights?

Conformalized matrix completion (cmc) satisfies $\mathbb{E}\left[\operatorname{AvgCov}(\widehat{C};\mathbf{M},\mathcal{S})\right] \ge 1 - \alpha - \mathbb{E}[\Delta],$ where $\Delta = \frac{1}{2} \sum_{(i,j) \in \mathcal{S}_{cal} \cup \{(i_*,j_*)\}} \left|\widehat{w}_{ij} - w_{ij}\right|$

Coverage gap with common sampling models.

- Uniform sampling $p_{ij} = p \implies \Delta = 0$
- Logistic missingness $-\log(h_{ij}) = u_i + v_j$ and $\boldsymbol{u}^{\top} \boldsymbol{1} = 0$. Maximum likelihood estimator yields $\mathbb{E}[\Delta] \lesssim \sqrt{\frac{\log(\max\{d_1, d_2\})}{\min\{d_1, d_2\}}}$
- Missingness with a general link function $-\log(h_{ij}) = \phi(A_{ij})$ and $\operatorname{rank}(\mathbf{A}) = k^*$. MLE yields $\mathbb{E}[\Delta] \lesssim \min\{d_1, d_2\}^{-1/4}$

Numerical simulations

Model-based approach can be invalid

Conformalized matrix completion (cmc)

- Input: $\mathbf{M} \in \mathbb{R}^{d_1 \times d_2}$, $\mathcal{S} = \{(i, j) \in [d_1] \times [d_2] \mid M_{ij} \text{ is observed}\}$
- Step 1: For any pre-specified $\eta \in (0, 1)$, draw $W_{ij} \sim \text{Bern}(\eta)$
- Step 2: Data splitting $\mathcal{S} = \mathcal{S}_{tr} \cup \mathcal{S}_{cal}$:
 - $\mathcal{S}_{tr} = \{(i,j) \in \mathcal{S} : W_{ij} = 1\}, \qquad \mathcal{S}_{cal} = \{(i,j) \in \mathcal{S} : W_{ij} = 0\}.$
- Step 3: With the training set M_{Str},
 1. Estimate M = (M_{ij}) and P = (p_{ij})
 2. Calculate a local uncertainty estimate s = (s_{ij})
- Step 4: With the calibration set,
- 1. Calculate the nonconformity scores $R_{ij} = \frac{|M_{ij} \widehat{M}_{ij}|}{\widehat{s}_{ij}}$, $(i, j) \in \mathcal{S}_{cal}$
- 2. Calculate the weights for each $(i, j) \in S_{cal} \cup \{(i_*, j_*)\}$

$$\widehat{w}_{ij} = \frac{\widehat{h}_{ij}}{\sum_{(i',j')\in\mathcal{S}_{cal}}\widehat{h}_{i'j'} + \widehat{h}_{i_*j_*}}$$

3. Calculate the quantile for each (i_*, j_*) :

$$\widehat{q}_{i_*j_*} = \text{Quantile}_{1-\alpha} \left(\sum_{(i,j)\in\mathcal{S}_{\text{cal}}} \widehat{w}_{ij} \delta_{R_{ij}} + \widehat{w}_{i_*j_*} \delta_{\infty} \right)$$

Output:

$$\widehat{C}(i_*, j_*) = \widehat{M}_{i_*j_*} \pm \widehat{q}_{i_*j_*} \widehat{s}_{i_*j_*}$$

Figure 1. Violation of incoherence.

Rossmann sales dataset

- Heterogeneous missingness: $p_{ij} = 0.8$ for weekdays and $p_{ij} = 0.8/3$ for weekends; $p_{ij} = 0.8/3$ for 200 randomly sampled stores
- Working model: one-bit model with a logistic link function
- More simulation results can be found in Gui et al. [2]

- [1] Chen, Y., Chi, Y., Fan, J., Ma, C., and Yan, Y. (2020). Noisy matrix completion: Understanding statistical guarantees for convex relaxation via nonconvex optimization. SIAM journal on optimization, 30(4):3098–3121.
- [2] Gui, Y., Barber, R., and Ma, C. (2023). Conformalized matrix completion. In Thirty-seventh Conference on Neural Information Processing Systems.

https://github.com/yugjerry/conf-mc

Student Research Poster Day, Department of Statistics, UChicago, 2024

yugui@uchicago.edu