Conformal Alignment: Knowing When to Trust Foundation Models with Guarantees

Yu Gui^{* 1} Ying Jin^{* 2} Zhimei Ren^{* 3}

* alphabetical ordering

¹Department of Statistics, University of Chicago

²Data Science Initiative, Harvard University

³Department of Statistics and Data Science, University of Pennsylvania

LLM as "Radiologist"?

Shortage of Radiologist → use LLM?

Goal: Selection with FDR control

Find a subset $S \subseteq [m]$ such that

$$FDR(\mathcal{S}) = \mathbb{E}\left[\frac{\sum_{j \in [m]} \mathbf{1}\{A_{n+j} \le c, j \in \mathcal{S}\}}{\max(|\mathcal{S}|, 1)}\right] \le \alpha$$

while maximizing the selection power

Power(
$$\mathcal{S}$$
) = $\mathbb{E}\left[\frac{\sum_{j\in[m]}\mathbf{1}\{A_{n+j}>c,j\in\mathcal{S}\}}{\max(\sum_{j\in[m]}\mathbf{1}\{A_{n+j}>c\},1)}\right]$

Question

Foundation model

$$f: \operatorname{Prompt} X \mapsto \operatorname{Output} Y$$

- How to safely use LLM outputs Y = f(X)?
- What guarantees are reasonable and how to achieve such guarantees?

Conformal Alignment

- $\mathcal{D}_{\mathtt{train}}$: fit a prediction model $g(X;f) \approx \mathcal{A}(f(X),E)$
- 2. $\mathcal{D}_{\texttt{calib}}$: calculate $\widehat{A}_{n+j} = g(X_{n+j}; f)$ and conformal p-values

$$p_j = \frac{1 + \sum_{i \in \mathcal{D}_{\text{calib}}} \mathbf{1} \{ A_i \le c, \widehat{A}_i \ge \widehat{A}_{n+j} \}}{|\mathcal{D}_{\text{calib}}| + 1}$$

3. Conformal Selection [Jin and Candés (2023)] via BH procedure: $\mathcal{S}_{\text{CA}} = \{j \in [m] : p_j \leq \alpha k^*/m\}$ with

$$k^* = \max\left\{k \in [m] : p_{(k)} \le \frac{\alpha k}{m}\right\}$$

Problem setup

• Available dataset with reference E_i :

$$\mathcal{D} = \mathcal{D}_{ exttt{train}} \cup \mathcal{D}_{ exttt{calib}} = \{(X_i, E_i)\}_{i \in [n]}$$

- Alignment function $\mathcal{A}:(f(X),E)\mapsto A$
- Test dataset $\mathcal{D}_{\mathtt{test}} = \{X_{n+j}\}_{j \in [m]}$
- An output is admissible if

$$A_i = \mathcal{A}(f(X_i), E_i) > c$$

• Goal: identify a subset $S \subseteq [m]$ with "trustworthy" outputs, i.e. $A_{n+j} > c$

Conformal Alignment Tasks & LLM output Selective deployment $\hat{\mu}(\cdot)$ $\hat{c} = f(\alpha; \mathcal{D}_{\text{calib}}, \mathcal{D}_{\text{test}})$ alignment Use LLM Calibrated cutoff report? Use LLM report? Use LLM Human-quality data $\mathcal{D}_{ ext{calib}}$ $\mathcal{D}_{ ext{train}}$ **Reliability Guaranteed!** ② Confidence calibration ① Predictor training Insider view

Theoretical Guanrantee

• (FDR control) Under exchangeability assumption,

$$FDR(S_{CA}) \leq \alpha$$

• (Asymptotic power) With $H(t) = \mathbb{P}(A \le c, g(X) \ge t)$ and some $t(\alpha)$,

$$\lim_{|\mathcal{D}_{\mathrm{calib}}|,m\to\infty} \mathsf{Power} = \mathbb{P}(H(g(X)) \leq t(\alpha) \mid A > c)$$

Results with MIMIC-CXR

- X = X-ray scan, E = reports by human experts
- f: finetuned ViT
- $\mathcal{A}(f(X), E) = \mathbf{1}\{\text{CheXBert outputs} \ge 12 \text{ mathces}\}$
- q: classifier($A \sim \text{scores}$) scores contain input uncertainty, output confidence, and self-evaluation scores as covariates [Kuhn et al (2023), Kadavath et al (2022), Lin et at (2024)] (more details [1])

References

[1] Gui, Y., Jin, Y., and Ren, Z. (2024). Conformal alignment: Knowing when to trust foundation models with guarantees. Advances in Neural Information Processing Systems, 34.