Distributionally robust risk evaluation with shape constraints

Yu Gui

Department of Statistics and Data Science, the Wharton School

Rina Foygel Barber @UChicago

Cong Ma @UChicago

IMAGENET DATASET

Leaderboard: image classification on ImageNet*

Question

What if test distribution \neq training distribution?

AN EXAMPLE: OBJECTNET[†]

PERFORMANCE ON OBJECTNET

Question

How to quantify the out-of-sample performance?

$$\mathbb{E}_{P}[R_{\alpha}(X)] \leq \alpha \qquad \stackrel{P^{\text{test}} \neq P}{\Longrightarrow} \qquad \mathbb{E}_{P^{\text{test}}}[R_{\alpha}(X)] = ?$$

$$\mathbb{E}_{P}[R_{\alpha}(X)] \leq \alpha \qquad \stackrel{P^{\text{test}} \neq P}{\Longrightarrow} \qquad \mathbb{E}_{P^{\text{test}}}[R_{\alpha}(X)] = ?$$

Example: hypothesis test for $P \in \mathcal{H}_0$ with data from P^{test} (Thams et al., 2023)

➤ Risk function

$$R_{\alpha}(X) = \phi_{\alpha}(X)$$

➤ Valid type-I error control with data from P

$$\mathbb{P}_P(\phi_{\alpha}(X) = 1) \le \alpha \iff \mathbb{E}_P[R_{\alpha}(X)] \le \alpha$$

$$\mathbb{E}_{P}[R_{\alpha}(X)] \leq \alpha \qquad \stackrel{P^{\text{test}} \neq P}{\Longrightarrow} \qquad \mathbb{E}_{P^{\text{test}}}[R_{\alpha}(X)] = ?$$

A concrete example: predictive inference under covariate shift[‡]

$$\mathbb{E}_{P}[R_{\alpha}(X)] \leq \alpha \qquad \stackrel{P^{\text{test}} \neq P}{\Longrightarrow} \qquad \mathbb{E}_{P^{\text{test}}}[R_{\alpha}(X)] = ?$$

A concrete example: predictive inference under covariate shift[‡]

- \blacktriangleright Prediction set $\widehat{C}_{1-\alpha}$ constructed with a dataset $\mathcal D$ drawn from P
- ➤ Risk function

$$R_{\alpha}(X) = \mathbb{P}\left(Y \notin \widehat{C}_{1-\alpha}(X) \mid X\right)$$

► Conformal prediction \bigcirc : validity when $\{(X,Y)\} \cup \mathcal{D}$ is exchangeable (implies $X \sim P$)

$$\text{for any }\alpha\in(0,1)\qquad \mathbb{P}(Y\notin \widehat{C}_{1-\alpha}(X))\leq\alpha\quad\Longleftrightarrow\quad \mathbb{E}_P[R_\alpha(X)]\leq\alpha$$

REWEIGHTING METHODS

"Estimable" distribution shift

REWEIGHTING METHODS

"Estimable" distribution shift

$$\widehat{\mathbf{w}} pprox \frac{\mathsf{d}P^{\mathrm{test}}}{\mathsf{d}P}$$

REWEIGHTING METHODS

"Estimable" distribution shift

 \blacktriangleright Covariate shift[†]: choose β

$$\mathbb{E}_{P^{\text{test}}}[R_{\beta}(X)] = \mathbb{E}_{P}\left[\frac{\mathsf{d}P^{\text{test}}}{\mathsf{d}P}(X)R_{\beta}(X)\right] \approx \mathbb{E}_{P}[\widehat{\mathbf{w}}(X)R_{\beta}(X)] \leq \alpha$$

Reweighting methods

"Estimable" distribution shift

➤ An example: missing at random (MAR)[†]

 $\mathbf{M} \in \mathbb{R}^{d_1 imes d_2}$ M_{ij} is observed independently with probability $p_{ij} \in (0,1)$

 $ightharpoonup \mathcal{S} = \{(i,j): \ M_{i,j} \ \text{is observed}\} \ \text{and} \ (i_*,j_*) \ | \ \mathcal{S} \sim \mathrm{Unif}(\mathcal{S}^c)$

$$\mathbb{P}\bigg((i_*,j_*) = (i_k,j_k) \mid \mathcal{S} \cup \{(i_*,j_*)\} = \{(i_l,j_l)\}_{l \le n+1}\bigg) = \frac{(1-p_{i_kj_k})/p_{i_kj_k}}{\sum_{l \le n+1} (1-p_{i_lj_l})/p_{i_lj_l}}$$

importance sampling with "density ratio"
$$= \frac{1-p_{i,j}}{p_{i,j}}$$

missingness pprox distribution shift between sampled and unsampled populations

[†]Gui, Yu, Rina Barber, and Cong Ma. "Conformalized matrix completion." Advances in Neural Information Processing Systems 36 (2023): 4820-4844.

Reweighting methods

"Estimable" distribution shift

 \triangleright Covariate shift: choose β

$$\mathbb{E}_{P^{\text{test}}}[R_{\beta}(X)] = \mathbb{E}_{P}\left[\frac{\mathsf{d}P^{\text{test}}}{\mathsf{d}P}(X)R_{\beta}(X)\right] \approx \mathbb{E}_{P}[\widehat{\mathbf{w}}(X)R_{\beta}(X)] \leq \alpha$$

Reweighting methods

"Estimable" distribution shift

 \triangleright Covariate shift: choose β

$$\mathbb{E}_{P^{\mathrm{test}}}[R_{\beta}(X)] = \mathbb{E}_{P}\left[\frac{\mathrm{d}P^{\mathrm{test}}}{\mathrm{d}P}(X)R_{\beta}(X)\right] \approx \mathbb{E}_{P}[\widehat{\mathbf{w}}(X)R_{\beta}(X)] \leq \alpha$$

An inevitable error term $\|\mathbf{w} - \widehat{\mathbf{w}}\|_1!$

An example with a wine quality dataset§: white wine (4898) vs red wine (1599)

[§]Cortez et al. (2009), https://archive.ics.uci.edu/dataset/186/wine+quality. 🗖 🕟 4 🖹 🕨 🐧 🔊 4 🕞

DISTRIBUTIONALLY ROBUST LEARNING (DRL)[†]

Worst-case control: choose β

$$\mathbb{E}_{P^{\mathrm{test}}}[R_{\beta}(X)] \leq \sup_{Q' \in \mathcal{Q}} \mathbb{E}_{Q'}[R_{\beta}(X)] \leq \alpha \quad \text{if } P^{\mathrm{test}} \in \mathcal{Q}$$
 (DRL)

[†]El Ghaoui and Lebret (1997); Ben-Tal and Nemirovski (1998); Lam (2016); Duchi and Namkoong (2019); Blanchet et al. (2019)

DISTRIBUTIONALLY ROBUST LEARNING (DRL)[†]

Worst-case control: choose β

$$\mathbb{E}_{P^{\mathrm{test}}}[R_{\beta}(X)] \leq \sup_{Q' \in \mathcal{Q}} \mathbb{E}_{Q'}[R_{\beta}(X)] \leq \alpha \quad \text{if } P^{\mathrm{test}} \in \mathcal{Q}$$
 (DRL)

Too conservative/pessimistic!

$$\rho \approx D_{\mathrm{KL}}(P^{\mathrm{test}} \mid\mid P)$$

A middle ground?

Misspecification of reweighting methods VS Overly pessimism of (DRL)

A middle ground?

Misspecification of reweighting methods VS Overly pessimism of (DRL)

A middle ground?

Misspecification of reweighting methods VS Overly pessimism of (DRL)

Fitted density ratio \widehat{w} vs $\frac{dP^{\text{test}}}{dP}$ proxy: an illustrative example with a wine quality dataset

- ➤ Biased but exhibits an approximately isotonic trend
- ▶ Under(Over)-represented regions in P^{test} are revealed by the under(over)-represented regions in \widehat{P}
- Use the side information to construct an additional cone constraint

$$\mathcal{Q}_{\widehat{w}}^{\mathrm{iso}} = \{Q': \, \mathrm{d} Q'/\mathrm{d} P \text{ is isotonic in } \widehat{w}\}$$

$$\rho \approx D_{\mathrm{KL}}(P^{\mathrm{test}} \mid\mid P)$$

ightharpoonup Under any fixed partial order \preccurlyeq on $\mathcal{X} \subseteq \mathbb{R}^d$

$$\mathcal{Q}_{\preccurlyeq}^{\mathrm{iso}} = \{Q': \, \mathrm{d}Q'/\mathrm{d}P \text{ is isotonic under } \preccurlyeq\}$$

ightharpoonup Under any fixed partial order \preccurlyeq on $\mathcal{X} \subseteq \mathbb{R}^d$

$$\mathcal{Q}_{\preccurlyeq}^{\mathrm{iso}} = \{Q': \ \mathrm{d}Q'/\mathrm{d}P \ \mathrm{is \ isotonic \ under} \ \preccurlyeq\}$$

 \blacktriangleright iso-DRL chooses β such that

$$\sup_{Q\in\mathcal{Q}\cap\mathcal{Q}_{\preccurlyeq}^{\mathrm{iso}}}\mathbb{E}_{Q}\left[R_{\beta}(X)\right]\leq\alpha\tag{iso-DRL}$$

Question

How to solve the cone-constrained optimization problem (iso-DRL)?

Question

How to solve the cone-constrained optimization problem (iso-DRL)?

- ➤ At the population level: a cone-constrained optimization problem in function space?
- ➤ With a finite sample: efficient computation? consistent estimate?

Question

How to solve the cone-constrained optimization problem (iso-DRL)?

- ➤ At the population level: a cone-constrained optimization problem in function space?
- ➤ With a finite sample: efficient computation? consistent estimate?

Improvements over DRL?

Gui et al, 2024 (Theorem 3.1)

Under regularity conditions on Q, it holds that

$$\sup_{Q \in \mathcal{Q} \cap \mathcal{Q}_{\preceq}^{\mathrm{iso}}} \mathbb{E}_{Q} \left[R_{\beta}(X) \right] = \sup_{Q \in \mathcal{Q}} \mathbb{E}_{Q} \left[R_{\beta}^{\mathrm{iso}}(X) \right] \tag{Equiv}$$

$$R_{\beta}^{\mathrm{iso}}(X) = \underset{a \in \mathcal{C}_{\lesssim}^{\mathrm{iso}}}{\operatorname{argmin}} \int (a - R_{\beta})^2 \, \mathrm{d}P$$

 $\mathcal{C}_{\preccurlyeq}^{\mathrm{iso}} = \mathsf{cone} \ \mathsf{of} \ \mathsf{isotonic} \ \mathsf{functions} \ \mathsf{under} \ \preccurlyeq$

Gui et al, 2024 (Theorem 3.1)

Under regularity conditions on Q, it holds that

$$\sup_{Q\in\mathcal{Q}\cap\mathcal{Q}_{\preceq}^{\mathrm{iso}}}\mathbb{E}_{Q}\left[R_{\beta}(X)\right]=\sup_{Q\in\mathcal{Q}}\mathbb{E}_{Q}\left[R_{\beta}^{\mathrm{iso}}(X)\right]\tag{Equiv}$$

ightharpoonup Examples of Q

 \succ Γ -marginal selection model in sensitivity analysis (Rosenbaum, 1987; Tan, 2006)

$$\mathcal{Q} = \left\{Q: \ \Gamma^{-1} \leq \frac{\mathrm{d}Q}{\mathrm{d}P}(X) \leq \Gamma \text{ almost surely}\right\} \tag{Γ-MS}$$

ightharpoonup f-divergence constrained distribution shift (Ben-Tal and Nemirovski, 1998; El Ghaoui and Lebret, 1997; Duchi and Namkoong, 2019)

$$Q = \{Q: D_f(Q \mid\mid P) \le \rho\}$$
 (f-Div)

Gui et al, 2024 (Theorem 3.1)

$$\sup_{Q \in \mathcal{Q} \cap \mathcal{Q}_{\preceq}^{\mathrm{iso}}} \mathbb{E}_{Q} \left[R_{\beta}(X) \right] = \sup_{Q \in \mathcal{Q}} \mathbb{E}_{Q} \left[\frac{R_{\beta}^{\mathrm{iso}}(X)}{\beta} \right] \tag{Equiv}$$

- ightharpoonup Examples of Q
 - ightharpoonup Γ -marginal selection model in sensitivity analysis
 - ➤ f-divergence constrained distribution shift
- ➤ Two sources of computational costs are separated:

Gui et al, 2024 (Theorem 3.1)

$$\sup_{Q \in \mathcal{Q} \cap \mathcal{Q}_{\preceq}^{\mathrm{iso}}} \mathbb{E}_{Q} \left[R_{\beta}(X) \right] = \sup_{Q \in \mathcal{Q}} \mathbb{E}_{Q} \left[R_{\beta}^{\mathrm{iso}}(X) \right] \tag{Equiv}$$

- ightharpoonup Examples of Q
 - ightharpoonup Γ -marginal selection model in sensitivity analysis
 - > f-divergence constrained distribution shift
- ➤ Two sources of computational costs are separated:
 - $ightharpoonup \mathcal{Q} \longrightarrow \mathsf{computational} \; \mathsf{cost} \; \mathsf{in} \; \mathsf{solving} \; (\mathsf{DRL}) \; \mathsf{with} \; R^{\mathrm{iso}}_{eta}$

Gui et al, 2024 (Theorem 3.1)

$$\sup_{Q \in \mathcal{Q} \cap \mathcal{Q}_{\preceq}^{\mathrm{iso}}} \mathbb{E}_{Q} \left[R_{\beta}(X) \right] = \sup_{Q \in \mathcal{Q}} \mathbb{E}_{Q} \left[R_{\beta}^{\mathrm{iso}}(X) \right] \tag{Equiv}$$

- ightharpoonup Examples of Q
 - ightharpoonup Γ -marginal selection model in sensitivity analysis
 - > f-divergence constrained distribution shift
- ➤ Two sources of computational costs are separated:
 - $ightharpoonup \mathcal{Q} \longrightarrow \operatorname{computational\ cost\ in\ solving\ }(\mathsf{DRL})$ with R^{iso}_{eta}
 - $ightharpoonup \mathcal{Q}^{\mathrm{iso}}_{\preccurlyeq} \longrightarrow \mathsf{isotonic} \ \mathsf{projection} \ \mathsf{of} \ R$

Gui et al, 2024 (Theorem 3.1)

$$\sup_{Q \in \mathcal{Q} \cap \mathcal{Q}_{\preceq}^{\mathrm{iso}}} \mathbb{E}_{Q} \left[R_{\beta}(X) \right] = \sup_{Q \in \mathcal{Q}} \mathbb{E}_{Q} \left[R_{\beta}^{\mathrm{iso}}(X) \right] \tag{Equiv}$$

- ightharpoonup Examples of Q
 - ightharpoonup Γ -marginal selection model in sensitivity analysis
 - > f-divergence constrained distribution shift
- ➤ Two sources of computational costs are separated:
 - $ightharpoonup \mathcal{Q} \longrightarrow \mathsf{computational} \; \mathsf{cost} \; \mathsf{in} \; \mathsf{solving} \; (\mathsf{DRL}) \; \mathsf{with} \; R^{\mathsf{iso}}_{eta}$
 - $ightharpoonup \mathcal{Q}^{\mathrm{iso}}_{\preccurlyeq} \longrightarrow \mathsf{isotonic} \; \mathsf{projection} \; \mathsf{of} \; R$
- \blacktriangleright (Equiv) holds at both population and sample levels: reference measure can be P or \widehat{P}_n

AN EQUIVALENT FORMULATION

Gui et al, 2024 (Theorem 3.1)

Under regularity conditions on Q, it holds that

$$\sup_{Q\in\mathcal{Q}\cap\mathcal{Q}_{\preccurlyeq}^{\mathrm{iso}}}\mathbb{E}_{Q}\left[R_{\beta}(X)\right]=\sup_{Q\in\mathcal{Q}}\mathbb{E}_{Q}\left[\frac{R_{\beta}^{\mathrm{iso}}(X)}{\beta}\right]\tag{Equiv}$$

Shape constraints protect against "nonsmooth" or adversarial distribution shifts

$$\Delta^{\mathrm{iso}}(R; \mathcal{Q}) = \sup_{Q \in \mathcal{Q} \cap \mathcal{Q}_{\preceq}^{\mathrm{iso}}} \mathbb{E}_{Q}\left[R_{\beta}(X)\right] = \sup_{w_{\#}P \in \mathcal{Q} \cap \mathcal{Q}_{\preceq}^{\mathrm{iso}}} \mathbb{E}_{P}\left[w(X) \cdot R_{\beta}(X)\right]$$

$$\Delta^{\mathrm{iso}}(R;\mathcal{Q}) = \sup_{Q \in \mathcal{Q} \cap \mathcal{Q}_{\preccurlyeq}^{\mathrm{iso}}} \mathbb{E}_{Q}\left[R_{\beta}(X)\right] = \sup_{w_{\#}P \in \mathcal{Q} \cap \mathcal{Q}_{\preccurlyeq}^{\mathrm{iso}}} \mathbb{E}_{P}\left[w(X) \cdot R_{\beta}(X)\right]$$

$$\Delta^{\mathrm{iso}}(R; \mathcal{Q}) = \sup_{\mathcal{Q} \in \mathcal{Q} \cap \mathcal{Q}_{\preccurlyeq}^{\mathrm{iso}}} \mathbb{E}_{Q} \left[R_{\beta}(X) \right] = \sup_{w_{\#}P \in \mathcal{Q} \cap \mathcal{Q}_{\preccurlyeq}^{\mathrm{iso}}} \mathbb{E}_{P} \left[w(X) \cdot R_{\beta}(X) \right]$$

$$\begin{split} \widehat{\Delta}^{\mathrm{iso}}(\mathcal{Q}) &= \sup_{w_{\#}P \in \mathcal{Q} \cap \mathcal{Q}_{\preccurlyeq}^{\mathrm{iso}}} \mathbb{E}_{\widehat{\underline{P}}_{\pmb{n}}} \left[w(X) \cdot r_{\beta}(X) \right] \\ &\stackrel{(\mathsf{Equiv})}{=} \sup_{w_{\#}P \in \mathcal{Q}} \mathbb{E}_{\widehat{\underline{P}}_{\pmb{n}}} \left[w(X) \cdot \widehat{r}_{\beta}^{\mathrm{iso}}(X) \right] \end{split}$$

$$\Delta^{\mathrm{iso}}(R;\mathcal{Q}) = \sup_{Q \in \mathcal{Q} \cap \mathcal{Q}_{\preccurlyeq}^{\mathrm{iso}}} \mathbb{E}_{Q}\left[R_{\beta}(X)\right] = \sup_{w_{\#}P \in \mathcal{Q} \cap \mathcal{Q}_{\preccurlyeq}^{\mathrm{iso}}} \mathbb{E}_{P}\left[w(X) \cdot R_{\beta}(X)\right]$$

$$\begin{split} \widehat{\Delta}^{\mathrm{iso}}(\mathcal{Q}) &= \sup_{w_{\#}P \in \mathcal{Q} \cap \mathcal{Q}_{\preccurlyeq}^{\mathrm{iso}}, \|w\|_{\infty} \leq \Omega} \mathbb{E}_{\widehat{P}_{n}}\left[w(X) \cdot r_{\beta}(X)\right] \\ &\stackrel{(\mathsf{Equiv})}{=} \sup_{w_{\#}P \in \mathcal{Q}, \|w\|_{\infty} \leq \Omega} \mathbb{E}_{\widehat{P}_{n}}\left[w(X) \cdot \widehat{r}_{\beta}^{\mathrm{iso}}(X)\right] \end{split}$$

$$\begin{split} \widehat{\Delta}^{\mathrm{iso}}(\mathcal{Q}) &= \sup_{w_{\#}P \in \mathcal{Q} \cap \mathcal{Q}_{\preccurlyeq}^{\mathrm{iso}}, \|w\|_{\infty} \leq \Omega} \mathbb{E}_{\widehat{\underline{P}_{n}}}\left[w(X) \cdot r_{\beta}(X)\right] \\ &\stackrel{(\mathsf{Equiv})}{=} \sup_{w_{\#}P \in \mathcal{Q}, \|w\|_{\infty} \leq \Omega} \mathbb{E}_{\widehat{\underline{P}_{n}}}\left[w(X) \cdot \widehat{r}_{\beta}^{\mathrm{iso}}(X)\right] \end{split}$$

- $ightharpoonup r_{eta}(X)$ is a noisy observation of $R_{eta}(X)$
- $lacksim \widehat{r}_{eta}^{\mathrm{iso}}(X)$ is the isotonic projection of $r_{eta}(X)$ w.r.t. \widehat{P}_n

Gui et al, 2024 (Theorem 4.4, informal)

For both $(\Gamma\text{-MS})$ and (f-Div) with adequately large Ω ,

$$\left| \Delta^{\mathrm{iso}}(R; \mathcal{Q}) - \widehat{\Delta}^{\mathrm{iso}}(\mathcal{Q}) \right| \lesssim \mathcal{R}_n(\mathcal{C}_{\preccurlyeq,\Omega}^{\mathrm{iso}}) + \sqrt{\frac{\log n}{n}}$$

Gui et al, 2024 (Theorem 4.4, informal)

For both $(\Gamma\text{-MS})$ and (f-Div) with adequately large Ω ,

$$\left| \Delta^{\mathrm{iso}}(R; \mathcal{Q}) - \widehat{\Delta}^{\mathrm{iso}}(\mathcal{Q}) \right| \lesssim \mathcal{R}_n(\mathcal{C}_{\preccurlyeq,\Omega}^{\mathrm{iso}}) + \sqrt{\frac{\log n}{n}}$$

Bounding the Rademacher complexity

ightharpoonup d = 1 (Chatterjee and Lafferty, 2019)

$$\mathcal{R}_n(\mathcal{C}_{\preceq,\Omega}^{\mathrm{iso}}) \lesssim n^{-1/2}$$

▶ $d \ge 2$ with componentwise order, i.e. $\mathbf{x} \le \mathbf{z}$ iff $x_i \le z_i$ for all $i \in [d]$ (Han et al., 2019)

$$\mathcal{R}_n(\mathcal{C}_{\preceq,\Omega}^{\mathrm{iso}}) \lesssim n^{-1/d}$$

EMPIRICAL PERFORMANCE

Wine quality data set with varying ρ

NUMERICAL SIMULATIONS

➤ Conditional distribution

$$Y \mid X \sim \mathcal{N}\left(X^{\top}\beta + \sin(X_1) + 0.2X_3^2, 1\right)$$

➤ Marginal distributions

$$\begin{cases} \text{training distribution} & P: \quad X \sim \mathcal{N}(\mathbf{0}_d, \mathbf{I}_d), \\ \text{test distribution} & P^{\text{test}}: \quad X \sim \mathcal{N}(\mu, \mathbf{I}_d + \zeta \cdot \mathbf{\Omega}), \end{cases}$$

- \blacktriangleright d=5, $\Omega=\mathbf{1}\mathbf{1}^{\top}$, and $\mu=(2/\sqrt{d})\cdot(1,\cdots,1)^{\top}$
- $ightharpoonup \zeta = 0$: well-specified \widehat{w} via logistic regression; $\zeta > 0$: misspecified \widehat{w}

Varying splitting ratio η : well-specified density ratio

Estimated density ratio \widehat{w} via logistic regression using $\eta \times 100\%$ data

Results with well-specified density ratio $(\zeta = 0)^{\P}$

Varying splitting ratio η : misspecified density ratio

Results with misspecified density ratio ($\zeta = 1$)

SUMMARY

- ➤ Distribution shift can harm the validity of statistical inference
- ➤ By incorporating shape constraints, (iso-DRL) offers one way to balance the misspecification of reweighting methods and the pessimism of DRL

Thank you!

Condition on $\mathcal Q$

➤ Change of "variable"

$$Q \in \mathcal{Q}$$
 if and only if $w_\# P \in \mathcal{B}$

 \blacktriangleright Convex ordering $(\stackrel{cvx}{\preccurlyeq})$: for two distributions Q and P,

$$Q \overset{cvx}{\preccurlyeq} P \quad \text{if and only if} \quad \mathbb{E}_Q[\psi(X)] \leq \mathbb{E}_P[\psi(X)] \quad \text{ for any convex function } \psi$$

Condition (Closedness under convex ordering)

The set \mathcal{B} is closed under convex ordering such that

if
$$Q' \in \mathcal{B}$$
, then $Q \in \mathcal{B}$ for any $Q \stackrel{cvx}{\preccurlyeq} Q'$

(conditions)

A DETOUR: CONFORMAL PREDICTION

- \blacktriangleright Any distribution $P_{X,Y}$ (completely unknown)
- \blacktriangleright $\{(X_i,Y_i)\}_{i\leq n+1}\sim P_{X,Y}$ are exchangeable with unobserved Y_{n+1}

Finite-sample validity

Construct marginal confidence intervals any $\alpha \in (0,1)$

$$\mathbb{P}\left(Y_{n+1} \in C_{1-\alpha}(X_{n+1})\right) \ge 1 - \alpha$$

SPLIT CONFORMAL PREDICTION

- \blacktriangleright Split dataset into a training set and a calibration set $\mathcal{D}_{\mathrm{calib}} = \{(X_i, Y_i)\}_{i \leq n}$
- $lackbox{Prefit }\widehat{\mu}:\mathcal{X} o\mathcal{Y}$ on the training set \Longrightarrow nonconformity score R(x,y)

SPLIT CONFORMAL PREDICTION

- ightharpoonup Split dataset into a training set and a calibration set $\mathcal{D}_{\mathrm{calib}} = \{(X_i, Y_i)\}_{i \leq n}$
- ▶ Prefit $\widehat{\mu}: \mathcal{X} \to \mathcal{Y}$ on the training set \Longrightarrow nonconformity score R(x,y)
- \blacktriangleright Exchangeability of $\mathcal{D}_{\operatorname{calib}} \cup \{(X_{n+1}, Y_{n+1})\}$

$$\left(\frac{R(X_{n+1}, Y_{n+1})}{|\{R(x_i, y_i)\}_{i \le n+1}}\right) \sim \frac{1}{n+1} \sum_{i=1}^{n+1} \delta_{R(x_i, y_i)}$$

Calculate the quantile

$$q_{1-\alpha} = \text{Quantile}_{1-\alpha} \left(\frac{1}{n+1} \sum_{i=1}^{n+1} \delta_{R(x_i, y_i)} + \frac{1}{n+1} \delta_{\infty} \right)$$

Construct the prediction interval

$$C_{1-\alpha}(X_{n+1}) = \left\{ y : R(X_{n+1}, y) \le q_{1-\alpha} \right\}$$

TWO INGREDIENTS OF CONFORMAL PREDICTION

- \blacktriangleright Exchangeable data $\{(X_i,Y_i)\}_{i\leq n+1}$
- ightharpoonup Symmetric algorithm \mathcal{A} (not required in split conformal prediction)

TWO INGREDIENTS OF CONFORMAL PREDICTION

- \blacktriangleright Exchangeable data $\{(X_i,Y_i)\}_{i\leq n+1}$
- ightharpoonup Symmetric algorithm $\mathcal A$ (not required in split conformal prediction)

Question: What if $\{(X_i,Y_i)\}_{i\leq n+1}$ are not exchangeable? How can we fix this?

CP UNDER WEIGHTED EXCHANGEABILITY

➤ Weighted exchangeability

Definition (Tibshirani et al., 2019)

Random variables $\{V_i\}_{i\leq n+1}$ are said to be weighted exchangeable with weight functions $\{w_i\}_{i\leq n+1}$ if the joint density can be factorized by

$$f(v_1, \dots, v_{n+1}) = \left\{ \prod_{i \le n+1} w_i(v_i) \right\} \cdot g(v_1, \dots, v_{n+1})$$

where g is any function that does not depend on the ordering of its inputs.

CP UNDER WEIGHTED EXCHANGEABILITY

lacktriangle If $\{Z_i=(X_i,Y_i)\}_{i\leq n+1}$ are weighted exchangeable with weight functions w_i

$$\left\{ R(Z_{n+1}) \middle| \{R(z_i)\}_{i \le n+1} \right\} \sim \sum_{i \le n+1} p_i(Z_1, \dots, Z_{n+1}) \delta_{R(Z_i)}$$

where p_i 's are standardized weights

$$p_i^w(z_1, \dots, z_{n+1}) = \frac{\sum_{\sigma: \sigma(n+1)=i} \prod_{j \le n+1} w_j(z_{\sigma(j)})}{\sum_{\sigma} \prod_{j \le n+1} w_j(z_{\sigma(j)})}, \quad i = 1, \dots, n+1$$

CP UNDER WEIGHTED EXCHANGEABILITY

lacktriangle If $\{Z_i=(X_i,Y_i)\}_{i\leq n+1}$ are weighted exchangeable with weight functions w_i

$$\left\{ R(Z_{n+1}) \middle| \{R(z_i)\}_{i \le n+1} \right\} \sim \sum_{i \le n+1} p_i(Z_1, \dots, Z_{n+1}) \delta_{R(Z_i)}$$

where p_i 's are standardized weights

$$p_i^w(z_1, \dots, z_{n+1}) = \frac{\sum_{\sigma: \sigma(n+1)=i} \prod_{j \le n+1} w_j(z_{\sigma(j)})}{\sum_{\sigma} \prod_{j \le n+1} w_j(z_{\sigma(j)})}, \quad i = 1, \dots, n+1$$

➤ Construct the prediction interval

$$\widehat{C}_{1-\alpha}(X_{n+1}) = \{ y \in \mathcal{Y} : R(X_{n+1}, y) \le q_{1-\alpha}^w \}$$

with the threshold

$$q_{1-\alpha}^w = \text{Quantile}_{1-\alpha} \left(\sum_{i \le n} p_i^w \delta_{R(Z_i)} + p_{n+1}^w \delta_{\infty} \right)$$

- Barbu, A., D. Mayo, J. Alverio, W. Luo, C. Wang, D. Gutfreund, J. Tenenbaum, and B. Katz (2019). Objectnet: A large-scale bias-controlled dataset for pushing the limits of object recognition models. *Advances in neural information processing systems 32*.
- Ben-Tal, A. and A. Nemirovski (1998). Robust convex optimization. *Mathematics of operations research* 23(4), 769–805.
- Blanchet, J., Y. Kang, and K. Murthy (2019). Robust wasserstein profile inference and applications to machine learning. *Journal of Applied Probability* 56(3), 830–857.
- Chatterjee, S. and J. Lafferty (2019). Adaptive risk bounds in unimodal regression. Bernoulli.
- Cortez, P., A. Cerdeira, F. Almeida, T. Matos, and J. Reis (2009). Modeling wine preferences by data mining from physicochemical properties. *Decision support systems* 47(4), 547–553.
- Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei (2009). Imagenet: A large-scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*, pp. 248–255. leee.
- Duchi, J. and H. Namkoong (2019). Variance-based regularization with convex objectives. *Journal of Machine Learning Research* 20(68), 1–55.
- El Ghaoui, L. and H. Lebret (1997). Robust solutions to least-squares problems with uncertain data. *SIAM Journal on matrix analysis and applications* 18(4), 1035–1064.
- Han, Q., T. Wang, S. Chatterjee, and R. J. Samworth (2019). Isotonic regression in general dimensions. *The Annals of Statistics*.
- Lam, H. (2016). Robust sensitivity analysis for stochastic systems. *Mathematics of Operations***Research 41(4), 1248–1275.

- Rosenbaum, P. R. (1987). Sensitivity analysis for certain permutation inferences in matched observational studies. *Biometrika* 74(1), 13–26.
- Sugiyama, M. (2011). Learning under non-stationarity: Covariate shift adaptation by importance weighting. In *Handbook of Computational Statistics: Concepts and Methods*, pp. 927–952. Springer.
- Tan, Z. (2006). A distributional approach for causal inference using propensity scores. *Journal of the American Statistical Association* 101(476), 1619–1637.
- Thams, N., S. Saengkyongam, N. Pfister, and J. Peters (2023). Statistical testing under distributional shifts. *Journal of the Royal Statistical Society Series B: Statistical Methodology* 85(3), 597–663.
- Tibshirani, R. J., R. F. Barber, E. J. Candès, and A. Ramdas (2019). Conformal prediction under covariate shift. In *NeurIPS*.
- Vovk, V., A. Gammerman, and G. Shafer (2005). *Algorithmic learning in a random world*, Volume 29. Springer.