
Distributionally robust risk evaluation with shape constraints

Yu Gui

Department of Statistics and Data Science, the Wharton School



Rina Foygel Barber @UChicago Cong Ma @UChicago



ImageNet Dataset

Leaderboard: image classification on ImageNet∗

∗Deng et al. (2009)



Question

What if test distribution ̸= training distribution?



An example: ObjectNet†

†Barbu et al. (2019)



Performance on ObjectNet



Question

How to quantify the out-of-sample performance?



Statistical inference with distribution shift

EP [Rα(X)] ≤ α
P test ̸=P
=⇒ EP test [Rα(X)] = ?



Statistical inference with distribution shift

EP [Rα(X)] ≤ α
P test ̸=P
=⇒ EP test [Rα(X)] = ?

Example: hypothesis test for P ∈ H0 with data from P test (Thams et al., 2023)

➤ Risk function
Rα(X) = ϕα(X)

➤ Valid type-I error control with data from P

PP (ϕα(X) = 1) ≤ α ⇐⇒ EP [Rα(X)] ≤ α



Statistical inference with distribution shift

EP [Rα(X)] ≤ α
P test ̸=P
=⇒ EP test [Rα(X)] = ?

A concrete example: predictive inference under covariate shift‡

➤ Prediction set Ĉ1−α constructed with a dataset D drawn from P

➤ Risk function
Rα(X) = P

(
Y /∈ Ĉ1−α(X) | X

)
➤ Conformal prediction CP : validity when {(X,Y )} ∪ D is exchangeable (implies X ∼ P )

for any α ∈ (0, 1) P(Y /∈ Ĉ1−α(X)) ≤ α ⇐⇒ EP [Rα(X)] ≤ α

‡(Vovk et al., 2005; Tibshirani et al., 2019).
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Reweighting methods

“Estimable” distribution shift

➤ Covariate shift†: choose β

EP test [Rβ(X)] = EP

[
dP test

dP
(X)Rβ(X)

]
≈ EP [ŵ(X)Rβ(X)] ≤ α

†(Sugiyama, 2011)



Reweighting methods

“Estimable” distribution shift

➤ An example: missing at random (MAR)†

M ∈ Rd1×d2 Mij is observed independently with probability pij ∈ (0, 1)

➤ S = {(i, j) : Mi,j is observed} and (i∗, j∗) | S ∼ Unif(Sc)

P
(
(i∗, j∗) = (ik, jk) | S ∪ {(i∗, j∗)} = {(il, jl)}l≤n+1

)
=

(1− pikjk)/pikjk∑
l≤n+1(1− piljl)/piljl

importance sampling with “density ratio” =
1− pi,j
pi,j

missingness ≈ distribution shift between sampled and unsampled populations

†Gui, Yu, Rina Barber, and Cong Ma. ”Conformalized matrix completion.” Advances in Neural Information
Processing Systems 36 (2023): 4820-4844.
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Reweighting methods

“Estimable” distribution shift

➤ Covariate shift: choose β

EP test [Rβ(X)] = EP

[
dP test

dP
(X)Rβ(X)

]
≈ EP [ŵ(X)Rβ(X)] ≤ α

An inevitable error term ∥w − ŵ∥1!



An example with a wine quality dataset§: white wine (4898) vs red wine (1599)

§Cortez et al. (2009), https://archive.ics.uci.edu/dataset/186/wine+quality.

https://archive.ics.uci.edu/dataset/186/wine+quality


Distributionally robust learning (DRL)†

Worst-case control: choose β

EP test [Rβ(X)] ≤ sup
Q′∈Q

EQ′ [Rβ(X)] ≤ α if P test ∈ Q (DRL)

†El Ghaoui and Lebret (1997); Ben-Tal and Nemirovski (1998); Lam (2016); Duchi and Namkoong (2019);
Blanchet et al. (2019)



Distributionally robust learning (DRL)†

Worst-case control: choose β

EP test [Rβ(X)] ≤ sup
Q′∈Q

EQ′ [Rβ(X)] ≤ α if P test ∈ Q (DRL)

Too conservative/pessimistic!

†El Ghaoui and Lebret (1997); Ben-Tal and Nemirovski (1998); Lam (2016); Duchi and Namkoong (2019);
Blanchet et al. (2019)



ρ ≈ DKL(P
test || P )



A middle ground?

Misspecification of reweighting methods VS Overly pessimism of (DRL)



A middle ground?

Misspecification of reweighting methods VS Overly pessimism of (DRL)



A middle ground?

Misspecification of reweighting methods VS Overly pessimism of (DRL)

Fitted density ratio ŵ vs dP test

dP proxy: an illustrative example with a wine quality dataset

➤ Biased but exhibits an approximately isotonic trend

➤ Under(Over)-represented regions in P test are re-

vealed by the under(over)-represented regions in P̂

➤ Use the side information to construct an additional
cone constraint

Qiso
ŵ = {Q′ : dQ′/dP is isotonic in ŵ}



ρ ≈ DKL(P
test || P )



iso-DRL under general partial orders

➤ Under any fixed partial order ≼ on X ⊆ Rd

Qiso
≼ = {Q′ : dQ′/dP is isotonic under ≼}

➤ iso-DRL chooses β such that

sup
Q∈Q∩Qiso

≼

EQ [Rβ(X)] ≤ α (iso-DRL)
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iso-DRL under general partial orders

Question

How to solve the cone-constrained optimization problem (iso-DRL)?

➤ At the population level: a cone-constrained optimization problem in function space?

➤ With a finite sample: efficient computation? consistent estimate?

Improvements over DRL?



An equivalent formulation

Gui et al, 2024 (Theorem 3.1)

Under regularity conditions on Q, it holds that

sup
Q∈Q∩Qiso

≼

EQ [Rβ(X)] = sup
Q∈Q

EQ

[
Riso

β (X)
]

(Equiv)

Riso
β (X) = argmin

a∈Ciso
≼

∫
(a−Rβ)

2 dP

Ciso
≼ = cone of isotonic functions under ≼

➤ Examples of Q

➤ Two sources of computational costs are separated:

➤ Q −→ computational cost in solving (DRL) with Riso
β

➤ Qiso
≼ −→ isotonic projection of R

➤ (Equiv) holds at both population and sample levels: reference measure can be P or P̂n
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sup
Q∈Q∩Qiso

≼

EQ [Rβ(X)] = sup
Q∈Q

EQ

[
Riso

β (X)
]

(Equiv)

➤ Examples of Q
➢ Γ-marginal selection model in sensitivity analysis (Rosenbaum, 1987; Tan, 2006)

Q =

{
Q : Γ−1 ≤ dQ

dP
(X) ≤ Γ almost surely

}
(Γ-MS)

➢ f -divergence constrained distribution shift (Ben-Tal and Nemirovski, 1998; El Ghaoui
and Lebret, 1997; Duchi and Namkoong, 2019)

Q = {Q : Df (Q || P ) ≤ ρ} (f -Div)

➤ Two sources of computational costs are separated:

➤ Q −→ computational cost in solving (DRL) with Riso
β

➤ Qiso
≼ −→ isotonic projection of R

➤ (Equiv) holds at both population and sample levels: reference measure can be P or P̂n
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An equivalent formulation

Gui et al, 2024 (Theorem 3.1)

Under regularity conditions on Q, it holds that

sup
Q∈Q∩Qiso

≼

EQ [Rβ(X)] = sup
Q∈Q

EQ

[
Riso

β (X)
]

(Equiv)

➤ Examples of Q

➤ Two sources of computational costs are separated:

➤ Q −→ computational cost in solving (DRL) with Riso
β

➤ Qiso
≼ −→ isotonic projection of R

➤ (Equiv) holds at both population and sample levels: reference measure can be P or P̂n

Shape constraints protect against “nonsmooth” or adversarial distribution shifts



Finite-sample estimate

∆iso(R;Q) = sup
Q∈Q∩Qiso

≼

EQ [Rβ(X)] = sup
w#P∈Q∩Qiso

≼

EP [w(X) ·Rβ(X)]
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Finite-sample estimate

∆̂iso(Q) = sup
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≼ ,∥w∥∞≤Ω

EP̂n
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(Equiv)
= sup
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➤ rβ(X) is a noisy observation of Rβ(X)

➤ r̂isoβ (X) is the isotonic projection of rβ(X) w.r.t. P̂n

Gui et al, 2024 (Theorem 4.4, informal)

For both (Γ-MS) and (f -Div) with adequately large Ω,∣∣∣∣∆iso(R;Q)− ∆̂iso(Q)

∣∣∣∣ ≲ Rn(Ciso
≼,Ω) +

√
log n

n
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Bounding the Rademacher complexity

➤ d = 1 (Chatterjee and Lafferty, 2019)

Rn(Ciso
≼,Ω) ≲ n−1/2

➤ d ≥ 2 with componentwise order, i.e. x ≼ z iff xi ≤ zi for all i ∈ [d] (Han et al., 2019)

Rn(Ciso
≼,Ω) ≲ n−1/d
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Empirical performance

Wine quality data set with varying ρ



Numerical simulations

➤ Conditional distribution

Y | X ∼ N
(
X⊤β + sin(X1) + 0.2X2

3 , 1
)

➤ Marginal distributions{
training distribution P : X ∼ N (0d, Id),

test distribution P test : X ∼ N (µ, Id + ζ ·Ω),

➤ d = 5, Ω = 11⊤, and µ = (2/
√
d) · (1, · · · , 1)⊤

➤ ζ = 0: well-specified ŵ via logistic regression; ζ > 0: misspecified ŵ



Varying splitting ratio η: well-specified density ratio

Estimated density ratio ŵ via logistic regression using η × 100% data

(a) DKL(P
test||P̂ ) versus npre (b) Comparison with varying npre

Results with well-specified density ratio (ζ = 0)¶

¶ρ = ρ∗ = DKL(P
test||P )



Varying splitting ratio η: misspecified density ratio

(a) DKL(P
test||P̂ ) versus npre (b) Comparison with varying npre

Results with misspecified density ratio (ζ = 1)



Summary

➤ Distribution shift can harm the validity of statistical inference

➤ By incorporating shape constraints, (iso-DRL) offers one way to balance the
misspecification of reweighting methods and the pessimism of DRL

Thank you!



Condition on Q

➤ Change of “variable”
Q ∈ Q if and only if w#P ∈ B

➤ Convex ordering (
cvx
≼ ): for two distributions Q and P ,

Q
cvx
≼ P if and only if EQ[ψ(X)] ≤ EP [ψ(X)] for any convex function ψ

Condition (Closedness under convex ordering)

The set B is closed under convex ordering such that

if Q′ ∈ B, then Q ∈ B for any Q
cvx
≼ Q′ (conditions)



A detour: conformal prediction

➤ Any distribution PX,Y (completely unknown)

➤ {(Xi, Yi)}i≤n+1 ∼ PX,Y are exchangeable with unobserved Yn+1

Finite-sample validity

Construct marginal confidence intervals any α ∈ (0, 1)

P (Yn+1 ∈ C1−α(Xn+1)) ≥ 1− α

 



Split conformal prediction

➤ Split dataset into a training set and a calibration set Dcalib = {(Xi, Yi)}i≤n

➤ Prefit µ̂ : X → Y on the training set =⇒ nonconformity score R(x, y)

➤ Exchangeability of Dcalib ∪ {(Xn+1, Yn+1)}

(
R(Xn+1, Yn+1)

∣∣∣{R(xi, yi)}i≤n+1

)
∼ 1

n+ 1

n+1∑
i=1

δR(xi,yi)

Calculate the quantile

q1−α = Quantile1−α

(
1

n+ 1

n+1∑
i=1

δR(xi,yi) +
1

n+ 1
δ∞

)

Construct the prediction interval

C1−α(Xn+1) =
{
y : R(Xn+1, y) ≤ q1−α

}
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➤ Exchangeable data {(Xi, Yi)}i≤n+1

➤ Symmetric algorithm A (not required in split conformal prediction)



Two ingredients of conformal prediction

➤ Exchangeable data {(Xi, Yi)}i≤n+1

➤ Symmetric algorithm A (not required in split conformal prediction)

Question: What if {(Xi, Yi)}i≤n+1 are not exchangeable? How can we fix this?



CP under weighted exchangeability

➤ Weighted exchangeability

Definition (Tibshirani et al., 2019)

Random variables {Vi}i≤n+1 are said to be weighted exchangeable with weight functions
{wi}i≤n+1 if the joint density can be factorized by

f(v1, · · · , vn+1) =

 ∏
i≤n+1

wi(vi)

 · g(v1, · · · , vn+1)

where g is any function that does not depend on the ordering of its inputs.

➤ If {Zi = (Xi, Yi)}i≤n+1 are weighted exchangeable with weight functions wi{
R(Zn+1)

∣∣∣∣{R(zi)}i≤n+1

}
∼
∑

i≤n+1

pi(Z1, · · · , Zn+1)δR(Zi)

where pi’s are standardized weights

pwi (z1, · · · , zn+1) =

∑
σ:σ(n+1)=i

∏
j≤n+1 wj(zσ(j))∑

σ

∏
j≤n+1 wj(zσ(j))

, i = 1, · · · , n+ 1

➤ Construct the prediction interval

Ĉ1−α(Xn+1) =
{
y ∈ Y : R(Xn+1, y) ≤ qw1−α

}
with the threshold

qw1−α = Quantile1−α

∑
i≤n

pwi δR(Zi) + pwn+1δ∞


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