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Contrastive learning for unsupervised classification

Contrastive loss

Downstream tasks

Projector Encoder 

Augmentation

Figure 1. Encoder-projector framework.

Positive pairs: (x+
i,k, x+

i,l); Negative pairs: (x+
i,k, x+

j,l), i 6= j

Goal: learn representations by
1. encouraging proximity between positive pairs

2. forcing negative pairs to be far

Contrastive loss (cross-entropy with pseudo labels)
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,

z′

‖z′‖
〉

Motivating questions

1. Effect of contrastive learning on representation and role of hyperparameters?

2. Causes of dimensional collapse in both features and embeddings?

3. Role of the projector? (removed after training in practice)

Expansion and shrinkage of the signal
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Figure 2. Results with the pretrained encoder and a one-layer linear projector.

scorei =
∑
j≤i

〈vj, µc1,c2〉
2

‖µc1,c2‖2

Feature-level GMMmodeling

2-GMM features: hi
i.i.d.∼ 1

2 N (−µ, Ip) + 1
2 N (µ, Ip)

Augmentations: h+
i,1, h+

i,2 | hi
i.i.d.∼ N (hi, σ2

augIp), h−
i

d= h+
j,1, i 6= j

Linear projector: zi = Whi

Population loss:

L(W) = 1
2τ

· E[‖Wh+
1 −Wh+

2 ‖2](
E[‖Wh+

1 ‖2]·E[‖Wh+
2 ‖2]
)1/2

+ log

(
E exp

(
− 1

2τ
· ‖Wh+

1 −Wh−‖2(
E[‖Wh+

1 ‖2]·E[‖Wh−‖2]
)1/2

))

Expansion-shrinkage phase transition in GMM features

Denote τ∗ = 2‖µ‖2 {(1 + σ2
aug + ‖µ‖2) log(1 + 2σ2

aug)
}−1

. A three-parameter con-

figuration (σ2
aug, τ, ‖µ‖2) is said to be in the

expansion regime if τ ≥ τ∗ and shrinkage regime if τ < τ∗.

Theorem 1

Consider minimizer W∗ of certain first-order approximation L̃(W).

When τ ≥ τ∗ (expansion regime) , W∗ =
∑

j σ∗
j u∗

jv∗>
j satisfies

σ∗
2 = · · · = σ∗

p = 0, 〈v∗
1, µ〉2 = ‖µ‖2 i.e., perfect alignment

When τ < τ∗ (shrinkage regime),

if σ2
aug → 0, then max

j
|σj〈v∗

j , µ〉| → 0 i.e., compress if correlated

Figure 3. Expansion measure t̃(W) = ‖Wµ‖2/(‖W‖2
F‖µ‖2).

Empirical evidence for feature-level modeling

1. Linear separable features after a few epochs

2. Contrastive loss decomposition at each epoch t,

L(θ(t), ϕ(t)) = min
ϕ

L(θ(t), ϕ) + L⊥(θ(t), ϕ(t)),

which satisfies L⊥(θ(t), ϕ(t)) � minϕ L(θ(t), ϕ) and

‖ϕ̃(t) − ϕ(t)‖ � ‖ϕ(t)‖, ϕ̃(t) = argminϕL(θ(t), ϕ)

Effect of projectors on generalization accuracy

Motivating question: how does expansion/shrinkage affect generalization in

downstream tasks?

Consider the linear projection from the following class:

W =
{

Wη = Ip + η · ρ−1µµ> : η > −1
}

, where ρ = ‖µ‖2

Invariance of generalization error in low-dimensional regime

`2-regularized logistic regression for non-separable data

`n(γ, β; λn) = En

{
log

[
1 + e

−y
(

γ+z>β
)]}

+ λn‖β‖2

Classification error Err(γ, β; η, λn) = P(γ + y′〈z′, β〉 < 0)

Proposition

Let (γ̂, β̂) be the minimizer of `n(γ, β; λn).

1. If λn = a · bn > 0 with constant a > 0 and 0 < bn �
√

n, then the test error

Err (γ̂, β̂; η, λn) = Φ(−‖µ‖) + OP(bnn−1/2).

2. If λn = a
√

n with constant a > 0, then Err (γ̂, β̂; η, λn) is decreasing in η.

Decreasing generalization error in high-dimensional regime

Implicit bias in overparametrized models: GD for logistic regression converges

to max-margin classifier for separable data

max
β

min
i≤n

yi〈zi, β〉

subject to ‖β‖ ≤ 1

Classification error Err(β̂; η) = P(y′〈z′, β̂〉 < 0)
A linear layer zi = Whi can be interpreted as reparametrization

Theorem 2

Suppose n/p → δ > 0. There exists threshold δ∗(ρ) > 0 such that

(separability) if δ < δ∗, there exists a unique solution β̂ with the margin

κ̂ = min
i≤n

yi〈zi, β̂〉 p−→ κ∗(‖µ‖, η) > 0

and conversely data are not separable w.h.p. if δ > δ∗.
(monotone error) if δ < δ∗, the asymptotic error Err∗(η), namely

Err (β̂; η) p−→ Err∗(η),
is decreasing in η.
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