e university of  Demystefying projection heads in contrastive learning:
HICAGO an expansion and shrinkage perspective

YuGuit CongMa?® YigiaoZhong

Department of Statistics, University of Chicago 2Department of Statistics, University of Wisconsin-Madison

Contrastive learning for unsupervised classification Feature-level GMM modeling Effect of projectors on generalization accuracy
= 2-GMM features: h N( p,L,) + l/\/(u, I, = Motivating question: how does expansion/shrinkage affect generalization in
downstream tasks?
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L(W) = L. ElWhi—Wh; " — Invariance of generalization error in low-dimensional regime
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= {9-regularized logistic regression for non-separable data
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Downstream tasks Denote 7 = 2| p|? {(1 + agug + ||]|?) log(1 + 20§Ug)}_1. A three-parameter con- Proposition
figuration (o3,g, 7, ||¢|*) is said to be in the Let (7, B) be the minimizer of £,(7, 8: An).
Figure 1. Encoder-projector framework. = expansion regime if 7 > 7* and shrinkage regime if 7 < 7*. 1. If Ay =a-by, > 0with constant a > 0 and 0 < b, < 1/n, then the test error
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* Positive pairs: (w’é,k’ mi,l)’ Negative pairs: (wi,k’ mj,l)’ 177 , L § , S = 2. 1f Ap = ay/n with constant a > 0, then Err (7, B;n, \) is decreasing in 7.
» Goal: learn representations by Consider minimizer W* of certain first-order approximation £(W).
1. encouraging proximity between positive pairs : . :
7. forcing negative pairs to be far = When 7 > 7* (expansion regime) , Z] a;kujva satisfies
» Contrastive loss (cross-entropy with pseudo labels) o5 =---=05=0, (vf,w)?=||ul® ie, perfectalignment Decreasing generalization error in high-dimensional regime
mmz Z _ eXp( sim(24, ;) sim(z, 2') = ( z 7 > * When 7 < 7% (shrinkage regime), = Implicit bias in overparametrized models: GD for logistic regression converges
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P i 2 ki ©Xp(78im (24, 21;)) e if 05, — 0, then max|o;(v;, p)| — 0 i.e., compress if correlated to max-margin classifier for separable data
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Motivating questions subjectto  [|B]| <1
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1. Effect of contrastive learning on representation and role of hyperparameters? I . 7 : ;”gj: ilﬁSS'ﬁclahon errir‘ifr}i(ﬂ’ ”)b I,P(y (2 >5>d< 0) L
2. Causes of dimensional collapse in both features and embeddings? v 2 ® Oaug=0.6 neariayer z; = i can be interpreted as reparametrization
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3. Role of the projector? (removed after training in practice) : ;30 — Theorem 2
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2o s 2 Figure 3. Expansion measure t(W) = [[W e[|/ (|| W 5| 4]). and conversely data are not separable w.h.p. if § > §*.
5 100 —— 70088 =N 4% = (monotone error) if § < 0%, the asymptotic error Err*(n), namely
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"] roass 3 e e Empirical evidence for feature-level modeling Err (8;1) = Err’(n),
S 17 Yo w T . is decreasing in 7.
index index temperature 1. Linear separable features after a few epochs
2. Contrastive loss decomposition at each epoch ¢,
Figure 2. Results with the pretrained encoder and a one-layer linear projector. [,(H(t), So(t)) _ min£(0<t), Q)+ EJ_(H(t)7 S0(15))’
%)
)2 | | References
SCOres — Z (V)5 Bep o) which satisfies £1(01), 1)) « min, £(01), o) and
? 2
j<i [e ol \\95<t) — 90(t>H < ||<,o(t)H, gB<t> = argmincpll(é?(t), ) [1] Yu Gui, Cong Ma, and Yigiao Zhong. Demystefying projection heads in con-

trastive learning: an expansion and shrinkage perspective. In preparation, 2023.

Statistical Foundations of Data Science and their Applications, Princeton, May 2023 yugui@uchicago.edu



mailto:yugui@uchicago.edu

	References

